Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats.
نویسندگان
چکیده
Dopaminergic neurotransmission in the nucleus accumbens (NAc) and neural processes in the basolateral (BLA) and central (CeN) amygdala nuclei are implicated in associative reward learning. Given their direct and indirect connections with the NAc and ventral tegmental area (VTA), both the BLA and CeN may regulate the mesoaccumbens dopamine (DA) system in rewarding situations. Electrical stimulation of the BLA (20 Hz, 10 sec, 300 microA) induced a long-lasting 25 +/- 4% increase in DA efflux in the NAc, measured by microdialysis in freely moving rats, whereas comparable stimulation of the CeN had no effect. Reverse dialysis of either the NMDA receptor antagonist APV (100 micrometer) or the AMPA-kainate receptor antagonist DNQX (100 micrometer), but not the metabotropic glutamate receptor antagonist (+/-)-amino-4-carboxy-methyl-phenylacetic acid (100 micrometer), into the NAc blocked the stimulation-evoked increase in DA efflux in the NAc. VTA infusion of lidocaine (lido; 4%) significantly reduced basal DA levels for approximately 30 min but failed to suppress the increase in NAc DA efflux resulting from BLA stimulation. Additionally, infusions of lido (4%) into the medial prefrontal cortex failed to block the stimulation-evoked increase in NAc DA efflux. These data support the hypothesis that the BLA can directly modulate DA efflux through local mechanisms in the NAc, independent of an action on DA cell bodies in the VTA. The finding that brief activation of the CeN had no long-lasting effects on DA efflux in the NAc suggests an important degree of functional independence between the CeN and BLA.
منابع مشابه
Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala
Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...
متن کاملInvolvement of nitric oxide within the rat central nucleus of amygdala in morphine tolerance
The role of glutamate receptor within the nucleus accumbens in morphine tolerance has been postulated. Previous studies have reported that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study the effects of intra-accumbal injections of L-arginine (0.3, 1, and 3 ?g/rat), the NO precursor and L-NAME (0.3, 1, and 3 ?g/rat), the NOS inhibito...
متن کاملInvolvement of nitric oxide within the rat central nucleus of amygdala in morphine tolerance
The role of glutamate receptor within the nucleus accumbens in morphine tolerance has been postulated. Previous studies have reported that glutamate receptors exert their effects in part through the release of nitric oxide (NO). In the present study the effects of intra-accumbal injections of L-arginine (0.3, 1, and 3 ?g/rat), the NO precursor and L-NAME (0.3, 1, and 3 ?g/rat), the NOS inhibito...
متن کاملSex differences and role of gonadal hormones in development of tolerance to morphine analgesia and glutamate level in the nucleus accumbens of rats: A microdialysis study
Introduction: Sex differences are observed in the development of tolerance to antinociceptive effect of opioid drugs such as morphine, but the underlying mechanisms remain unclear. Critical role of glutamate in the development and maintenance of opioid tolerance has been reported by many investigators. There are also evidences about interaction between gonadal hormones and neuromodulatory sy...
متن کاملAmygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex.
A dynamic interaction between the prefrontal cortex (PFC), amygdala, and nucleus accumbens (NAc) may be fundamental to regulation of goal-directed behavior by affective and cognitive processes. This study demonstrates that a mechanism for this triadic relationship is an inhibitory control by prefrontal cortex on accumbal dopamine release during amygdala activation. In freely moving rats, micros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2002